• 77- St-Antoine C, Lepage D, Foran G, Prebe A, Ayme-Perrot D, Rochefort D, Dolle M*, Relationship between the intermolecular interactions of carbonyl (PC) with nitrile (HNBR) functional groups and the flash point of a gel polymer electrolyte. Journal of Materials Chemistry A, 11, 10984-10992 (2023). https://doi.org/10.1039/D3TA01673K
  • 76- Bounor B, Seenath JS, Patnaik SG, Bourrier D, Hoang Tran CC, Esvan J, Weingarten L, Descamps, Mandine A, Rochefort D, Guay D, Pech D*, 3D micro-supercapacitors based on low-costporous Ni/MnO2 electrode materials. Energy Storage Materials, 63, 102986 (2023). https://doi.org/10.1016/j.ensm.2023.102986
  • 75- Guiet A, Simonin A, Bemana H, Al-Mahayni H, Li J, Kuruvinashetti K, Moury R, Hmon-Ribaud A, Chartrand D, Maisonneuve V, Lhoste J, Seifitokaldani A, Rochefort D and Kornienko N*, Reversible transition of anamorphous Cu-Al oxyfluoride into a highly active electrocatalyst for nitrate reduction to ammonia. Chem Catalysis, 3, 100595 (2023). https://doi.org/10.1016/j.checat.2023.100595
  • 74- Bodin C, Gélinas B, Deng J, Pithaksinsakul K, Zhu Y, Rochefort D, Fontaine O*, Describing the unsuspected advantage of redox ionic liquids applied to electrochemical energy storage. Current Opinion in Colloid & Interface Science, 64, 101677 (2023). https://doi.org/10.1016/j.cocis.2023.101677
  • 73- Alzate-Carvajal N, Rousselot S, Storelli A, Gelinas B, Zhang XW, Malveau C, Rochefort D, Dolle M*, A comparative study on the influence of the polymeric host for the operation of all-solid-state batteries at different temperatures. Journal of Power Sources, 535, 11 (2022). https://doi.org/10.1016/j.jpowsour.2022.231382
  • 72- Neron S, Morency M, Chen L, Maris T, Rochefort D, Iftimie R, Wuest JD*, Diphenoquinones Redux. Journal of Organic Chemistry, 87, 7673-7695 (2022). https://doi.org/10.1021/acs.joc.2c00260
  • 71- Seenath JS, Pech D, Rochefort D*, Investigation of protic ionic liquid electrolytes for porous RuO2 micro-supercapacitors. Journal of Power Sources, 548, 8 (2022). https://doi.org/10.1016/j.jpowsour.2022.232040
  • 70- Généreux S, Gariépy V, Rochefort D*, On the Relevance of Reporting Water Content in Highly Concentrated Electrolytes: The LiTFSI-Acetonitrile Case, Journal of the Electrochemical Society, 167, 120536 (2020). https://iopscience.iop.org/article/10.1149/1945-7111/abb34c
  • 69- Gélinas B, Bibienne T, Dolle M, Rochefort D*, Electrochemistry and transport properties of electrolytes modified with ferrocene redox-active ionic liquid additives, Canadian Journal of Chemistry, 98, 554-563 (2020). https://doi.org/10.1139/cjc-2020-0042
  • 68- Rynne O, Dubarry M, Molson C, Nicolas E, Lepage D, Prebe A, Ayme-Perrot D, Rochefort D, Dolle M*, Exploiting Materials to Their Full Potential, a Li-Ion Battery Electrode Formulation Optimization Study, ACS Applied Energy Materials, 3, 2935-2948 (2020). https://doi.org/10.1021/acsaem.0c00015
  • 67- El Khakani S, Verdier N, Lepage D, Prebe A, Ayme-Perrot D, Rochefort D, Dolle M*, Melt-processed electrode for lithium ion battery, Journal of Power Sources, 454, 227884 (2020). https://doi.org/10.1016/j.jpowsour.2020.227884
  • 66- Verdier N, Lepage D, Zidani R, Prebe A, Ayme-Perrot D, Pellerin C, Dolle M, Rochefort D*, Cross-Linked Polyacrylonitrile-Based Elastomer Used as Gel Polymer Electrolyte in Li-Ion Battery, ACS Applied Energy Materials, 3, 1099-1110 (2020). https://doi.org/10.1021/acsaem.9b02129
  • 65- Adibnia V, Mirbagheri M, Latreille PL, De Crescenzo G, Rochefort D; Banquy X*, Interfacial Forces across Ionic Liquid Solutions: Effects of Ion Concentration and Water Domains, Langmuir, 35, 15585-15591 (2019). https://doi.org/10.1021/acs.langmuir.9b02011
  • 64- Rynne O, Dubarry M, Molson C, Lepage D, Prebe A, Ayme-Perrot D, Rochefort D, Dolle M*, Designs of Experiments for Beginners-A Quick Start Guide for Application to Electrode Formulation, Batteries, 5, 72 (2019). https://doi.org/10.3390/batteries5040072
  • 63- Verdier N, El Khakani S, Lepage D, Prebe A, Ayme-Perrot D, Dolle M, Rochefort D*, Polyacrylonitrile-based rubber (HNBR) as a new potential elastomeric binder for lithium-ion battery electrodes, Journal of Power Sources, 440, 227111 (2019). https://doi.org/10.1016/j.jpowsour.2019.227111
  • 62- Wang Y, Malveau C, Rochefort D*, Solid-state NMR and electrochemical dilatometry study of charge storage in supercapacitor with redox ionic liquid electrolyte, Energy Storage Materials, 20, 80-88 (2019). https://doi.org/10.1016/j.ensm.2019.03.023
  • 61- Rochefort D, Enabling New Electrochemical Methods with Redox-Active Ionic Liquids, Current Opinion in Electrochemistry, 15, 125-132 (2019). Invited review. https://doi.org/10.1016/j.coelec.2019.04.028
  • 60- Skrypnik V and Rochefort D*, Electron transfer properties of a redox polyelectrolyte based on ferrocenated imidazolium, Electrochimica Acta, 305, 155-163 (2019). https://doi.org/10.1016/j.electacta.2019.02.119
  • 59- Rynne O, Lepage D, Ayme-Perrot D, Rochefort D, Dollé M*, Application of a Commercially-Available Fluorine-Free Thermoplastic Elastomer as a Binder for High-Power Li-Ion Battery Electrodes, Journal of The Electrochemical Society, 166, A1140-A1146 (2019). https://iopscience.iop.org/article/10.1149/2.0611906jes
  • 58- Verdier N, Lepage D, Prebe A, Ayme-Perrot D, Dollé M and Rochefort D*, Crosslinker Free Thermally Induced Crosslinking of Hydrogenated Nitrile Butadiene Rubber, Journal of Polymer Science Part A – Polymer Chemistry, 56, 1825-1833 (2019).
  • 57- Trinh, N.D., Lepage, D., Aymé‐Perrot, D., Badia, A., Dollé, M., and Rochefort, D.*, An Artificial Lithium Protective Layer that Enables the Use of Acetonitrile‐Based Electrolytes in Lithium Metal Batteries, Angewandte Chemie International Edition, 57, 5072-5075 (2018).
  • 56- Aldous, L.*, Black, J.J., Elias, M.C., Gélinas, B., and Rochefort, D., Enhancing thermoelectrochemical properties by tethering ferrocene to the anion or cation of ionic liquids: altered thermodynamics and solubility, Physical Chemistry Chemical Physics, 19, 24255-24263 (2017).
  • 55- Gélinas, B., Bibienne, T., Dollé, M. and Rochefort, D.*, Electroactive ionic liquids based on 2,5-ditert-butyl-1,4-dimethoxybenzene and triflimide anion as redox shuttle for LFP/LTO lithium-ion batteries, Journal of Power Sources, 372, 212-220 (2017).
  • 54- Gélinas, B., Das, D. and Rochefort, D.*, Air-stable, self-bleaching electrochromic device based on viologen and ferrocene-containing triflimide redox ionic liquids, ACS Applied Materials & Interfaces, 9, 28726-28736 (2017).
  • 53- El Khakani, S., Rochefort, D. and MacNeil, D.D.*, ARC study of LiFePO4 with different morphologies prepared via three synthetic routes, Journal of the Electrochemical Society, 163, A1311-A1316 (2016).
  • 52- Xie, H.J., Gélinas, B. and Rochefort, D.*, Redox-active electrolyte supercapacitors using electroactive ionic liquids, Electrochemistry Communications, 66, 42-45 (2016).
  • 51- Xie, H.J., Gélinas, B. and Rochefort, D.*, Electrochemical and physicochemical properties of redox ionic liquids using electroactive anions: influence of alkylimidazolium chain length, Electrochimica Acta, 200, 283-289 (2016).
  • 50- Gélinas, B., Natali, M., Bibienne, T., Li, Q.P., Dolle, M. and Rochefort, D.*, Electrochemical and Transport Properties of Ions in Mixtures of Electroactive Ionic Liquid and Propylene Carbonate with a Lithium Salt for Lithium-Ion Batteries, Journal of Physical Chemistry C, 120, 5315-5325 (2016).
  • 49- El Khakani, S., Rochefort, D., and MacNeil, D.D.*, Thermal Stability of High Voltage Li1-xMn1.5Ni0.5O4 Cathode Material Synthesized via a Sol-Gel Method, Journal of the Electrochemical Society, 163, A947-A952 (2016).
  • 48- Lone, A., Anany, H., Hakeem, M., Aguis, L., Avdjian, AC., Bouget, M., Atashi, A., Brovko, L., Rochefort, D., Griffiths, M.W.*, Development of prototypes of bioactive packaging materials based on immobilized bacteriophages for control of growth of bacterial pathogens in foods, International Journal of Food Microbiology, 217, 49-58 (2016)
  • 47- Meng, X., Quenneville, F., Venne, F., Di Mauro, E., Iseik, D., Barbosa, M., Drolet, Y., Natile, M., Rochefort, D., Soavi, F. and Santato, C.*, Electrolyte-Gated WO3 Transistors: Electrochemistry, Structure, and Device Performance, Journal of Physical Chemistry C, 119, 21732-21738 (2015).
  • 46- El Khakani, S., Forgie, J., MacNeil, D. and Rochefort, D.*, Redox shuttles for lithium-ion batteries at concentrations up to 1 M using an electroactive ionic liquid based on 2,5-di-tert-butyl-1,4-dimethoxybenzene, Journal of the Electrochemical Society, 162, A1432-A1438 (2015).
  • 45- Gélinas, B. and Rochefort, D.*, Synthesis and characterization of an electroactive ionic liquid based on the ferrocenylsulfonyl(trifluoromethylsulfonyl)imide anion. Electrochimica Acta, 162, 36-44 (2015).
  • 44- Nguyen, N.L. and Rochefort, D.*, Electrochemistry of ruthenium dioxide composite electrodes in diethylmethylammonium-triflate protic ionic liquid and its mixtures with acetonitrile. Electrochimica Acta, 147, 96-103 (2014)
  • 43- Gélinas, B., Forgie, J.C. and Rochefort D.*, Conductivity and Electrochemistry of Ferrocenyl-Imidazolium Redox Ionic Liquids with Different Alkyl Chain Lengths. Journal of the Electrochemical Society, 161, H161-H165 (2014).
  • 42- Moumene, M., Tabet-Aoul, A., Gougis, M., Rochefort, D. and Mohamedi M.*, Laser pulsed deposited nanosized ceria for direct electron transfer of glucose oxidase. International Journal of Electrochemical Science, 9, 176-184 (2014).
  • 41- Forgie, J.C., El Khakani, S., MacNeil, D.D. and Rochefort, D.*, Electrochemical characterization of a lithium-ion battery electrolyte based on mixtures of carbonates with a ferrocene-functionalised imidazolium electroactive ionic liquid. Physical Chemistry and Chemical Physics, 15, 7713-7721 (2013).
  • 40- Castro, C.A., Bélanger, D. and Rochefort, D.*, Electrochemical and spectroelectrochemical evidence of redox transitions involving protons in thin MnO2 electrodes in protic ionic liquids. Journal of Physical Chemistry C, 117, 20397-20405 (2013).
  • 39- Forgie, J.C. and Rochefort, D.*, Electroactive imidazolium salts based on 1,4dimethoxybenzene redox groups: synthesis and electrochemical characterisation. RSC Advances, 3, 12035-12038 (2013).
  • 38- Shul, G., Castro, C.A., Rochefort, D., Brooskby, P.A. and Bélanger, D.*, Electrochemical functionalization of glassy carbon electrode by reduction of diazonium cations in protic ionic liquid, Electrochimica Acta, 106, 375-385 (2013).
  • 37- Tremblay, J., Nguyen, N.L. and Rochefort, D.*, Hydrogen absorption by a palladium electrode from a protic ionic liquid at temperatures exceeding 100°C. Electrochemistry Communications, 34, 102-104 (2013).
  • 36- Zhang, Y. and Rochefort, D*., Fast and effective paper based sensor for self-diagnosis of bacterial vaginosis. Analytica Chimica Acta, 800, 87-94 (2013).
  • 35- Manzano, A. M.; Torres, G.; Gonzalez, A.; Banguela, A.; Ramos-Gonzalez, P. L.; Valiente, P. A.; Sanchez, M. I.; Sanchez-Lamar, A.; Rochefort, D.; McLean, M. D.; Ramos-Leal, M.*; Guerra, G.*, Role of lacasse isozymes in textile dye decolorization and diversity of laccase genes from Ganoderma weberianum (B-18), Journal of Applied Sciences in Environmental Sanitation, 8, 237-242 (2013).
  • 34- M. Moumene, D. Rochefort & M. Mohamedi*, “Electrochemical Functionalization as a Promising Avenue for Glucose Oxidase Immobilization at Carbon Nanotubes: Enhanced Direct Electron Transfer Process”, International Journal of Electrochemical Science 8, 2009-2022 (2013).
  • 33- N. Noujeim, S. Samsam, L. Eberlin, S. Sanon, D. Rochefort & A. Schmitzer*, “Mesomorphic and Ion Conducting Properties of Dialkyl(1,4-phenylene)Diimidazolium Salts”, Soft Matter 8, 10914-10920 (2012).
  • 32- Y. Zhang & D. Rochefort*, “Characterization and applications of microcapsules obtained by interfacial polycondensation”, Journal of Microencapsulation 29, 636-649 (2012).
  • 31- A. Tabet-Aoul, F. Saidani, D. Rochefort, & M. Mohamedi*, “Pulsed laser synthesis of SnO2-Pt nano-thin films onto carbon nanotubes and their electrocatalytic activity towards ethanol oxidation”, International Journal of Electrochemical Science 6, 6385-6397 (2011).
  • 30- A. Savolainen, Y. Zhang, D. Rochefort, U. Holopainen, T. Erho, J. Virtanen, & M. Smolander*, “Printing of polymer microcapsules for enzyme immobilization on paper substrate”, Biomacromolecules 12, 2008-2015 (2011).
  • 29- M. P. Guerrero, F. Bertrand, & D. Rochefort*, “Activity, stability and inhibition of a bioactive paper prepared by large-scale coating of laccase microcapsules”, Chemical Engineering Science 66, 5313-5320 (2011). Featured on Advances In Engineering.
  • 28- F. Saidani, D. Rochefort, & M. Mohamedi*, “Synthesis, Characterization of Nanostructured Rhodium Films and their Electrochemical Behaviour towards Carbon Monoxide Oxidation”, Electrocatalysis 2, 114-122 (2011).
  • 27- Y. Zhang et D. Rochefort, “Activity, conformation and thermal stability of laccase and glucose oxidase in poly(ethyleneimine) microcapsules for immobilization in paper”, Process Biochemistry, 46, 993-1000 (2011).
  • 26- F. Saidani, D. Rochefort et M. Mohamedi*, “Carbon Monoxide Oxidation on Nanostructured Pt Thin Films Synthesized by Pulsed Laser Deposition: Insights into the Morphology Effects”, Laser Chemistry, Article 143684 (2010).
  • 25- Y. Zhang et D. Rochefort*, “Comparison of emulsion and vibration nozzle methods for microencapsulation of laccase and glucose oxidase by interfacial reticulation of poly(ethyleneimine)”, Journal of Microencapsulation, 27, 703-713 (2010).
  • 24- L. Mayrand-Provencher and D. Rochefort*, "Pyridinium-based protic ionic liquids as electrolytes for RuO2 electrochemical capacitors", Journal of Power Sources, 195, 5114-5121 (2010).
  • 23- G. Gusetu-Roman, D. Rochefort et K. Waldron*, "Development of an Enzymatic Microreactor Based on Microencapsulated Laccase Coupled to Capillary Electrophoresis for On-Line Measurement of Oxidation Reactions", Journal of Chromatography A, 1216, 8270-8276 (2009).
  • 22- L. Mayrand-Provencher and D. Rochefort*, "Origin and Effect of Impurities in Protic Ionic Liquids Based on 2-Methylpyridine and Trifluoroacetic Acid for Applications in Electrochemistry", Electrochimica Acta, 54 7422-7428 (2009).
  • 21- L. Mayrand-Provencher et D. Rochefort*, “Influence of the Conductivity and Viscosity of Protic Ionic Liquids Electrolytes on the Pseudocapacitance of RuO2 Electrodes”, Journal of Physical Chemistry C, 113, 1632-1639 (2009).
  • 20- L. Kouisni, K. Gendron et D.Rochefort* “Confocal microscopy study of polymer microcapsules for enzyme immobilisation in paper substrates”, Journal of Applied Polymer Science, 111, 1-10 (2009).
  • 19- M. Hébert et D. Rochefort*, “Investigation of Microencapsulated Laccase as Enzyme Immobilization Template for Application in Biofuel Cells”, ECS Transactions, 16, 85-97 (2008).
  • 18- M. Hébert et D. Rochefort*, “Passivation of bare and microcapsule-modified electrodes from potential cycling in solutions with p-phenylenediamine”, Electrochimica Acta, 53, 5272-5279 (2008).
  • 17- D. Rochefort*, Kouisni L et Gendron K, “Immobilization of laccase on an electrode by means of poly(ethyleneimine) microcapsules”, Journal of Electroanalytical Chemistry, 617, 53-63 (2008).
  • 16- J. Jin, M. Prochaska, D. Rochefort, D.K. Kim, L. Zhuang, F.J. DiSalvo, R.B. van Dover et H.D. Abruña*, “A high-throughput search for direct methanol fuel cell anode electrocatalysts of type PtxBiyPbz”, Applied Surface Science, 254, 653-661 (2007).
  • 15- D. Rochefort* et A.L. Pont, “Pseudocapacitive behaviour of RuO2 in a proton exchange ionic liquid”, Electrochemistry Communications, 8, 1539-1543 (2006).
  • 14- D. Blasini, D. Rochefort, E. Fachini, L. Alden, F.J. DiSalvo, C.R. Cabrera et H.D. Abruña*, “Surface composition of ordered intermetallic compounds PtBi and PtPb”, Surface Science, 600, 2670-2680 (2006).
  • 13- M. Prochaska, J. Jin, D. Rochefort, L. Zhuang, F.J. DiSalvo, R.B. VanDover et H.D. Abruña*, “High Throughput Screening of Electrocatalysts for Fuel Cell Applications”, Review of Scientific Instruments, 77 (2006).
  • 12- D. Rochefort, H. Razafitrimo, R. Schulz et D. Guay*, “Surface modification of co-evaporated RuTi films upon oxygen and air exposure”, Surface Science, 595, 73-86 (2005).
  • 11- D. Rochefort et D. Guay*, “Modification to the composition of nanocrystalline RuO2 through reactive milling”, Journal of Alloys and Compounds, 400, 257-264 (2005).
  • 10- D. Rochefort*, Review of "Ionic Liquids in Chemical Analysis", Journal of the American Chemical Society, 131, 17031 (2009). Invited review.
  • 9- B. Garcia et D. Rochefort*, “On the application of ionic liquids as electrolytes in devices related to energy storage and conversion”, in Recent Research Developments in Electrochemistry, 8, 393-420 (2005).
  • 8- D. Rochefort, C. Hamel et D. Guay*, "Effect of graphite on the electrochemical properties of ball-milled RuO2", Journal of the Electrochemical Society, 151, A1141-A1146 (2004).
  • 7- F. Barrière, Y. Ferry, D. Rochefort et D. Leech*, "Targeting redox polymers as mediators for laccase oxygen reduction in a membrane-less biofuel cell", Electrochemistry Communications, 6, 237-241 (2004).
  • 6- D. Rochefort, D. Leech* et R. Bourbonnais, "Electron transfer mediator systems for bleaching of paper pulp (review)", Green Chemistry, 6, 14-24 (2004).
  • 5- D. Rochefort, P. Dabo, D. Guay* et P.M.A. Sherwood, “XPS investigations of thermally prepared RuO2 electrodes in reductive conditions”, Electrochimica Acta, 48, 4245-4252 (2003).
  • 4- D. Rochefort, R. Bourbonnais, D. Leech*, S. Renaud et M.G. Paice, "Electrochemical oxidation of transition metal-based mediators for pulp delignification", Journal of the Electrochemical Society, 149, D15-D20 (2002).
  • 3- D. Rochefort, R. Bourbonnais, D. Leech* et M.G. Paice, "Oxidation of lignin model compounds by organic and transition metal-based electron transfer mediators”, Chemistry Communications, 11, 1182-1183 (2002).
  • 2- R. Bourbonnais*, D. Rochefort, M.G. Paice, S. Renaud et D. Leech, “Development of stable redox complexes to mediate delignification of kraft pulp by laccase”, in Oxidative Delignification Chemistry. Fundamentals and Catalysis, ACS Symposium Series, 785, 391-395 (2001)
  • 1- R. Bourbonnais*, D. Rochefort, M.G. Paice, S. Renaud et D. Leech, “Transition metal complexes: A new class of laccase mediators for pulp bleaching” TAPPI Journal, 83, 68-76 (2000).